Secrets of the Creative Brain
Secrets of the Creative Brain
A leading neuroscientist who has spent decades studying creativity shares her research on where genius comes from, whether it is dependent on high IQ—and why it is so often accompanied by mental illness.
A more empirical approach can be found in the early-20th-century work of Lewis M. Terman, a Stanford psychologist whose multivolume Genetic Studies of Genius is one of the most legendary studies in American psychology. He used a longitudinal design—meaning he studied his subjects repeatedly over time—which was novel then, and the project eventually became the longest-running longitudinal study in the world. Terman himself had been a gifted child, and his interest in the study of genius derived from personal experience. (Within six months of starting school, at age 5, Terman was advanced to third grade—which was not seen at the time as a good thing; the prevailing belief was that precocity was abnormal and would produce problems in adulthood.) Terman also hoped to improve the measurement of “genius” and test Lombroso’s suggestion that it was associated with degeneracy.
But if high IQ does not indicate creative genius, then what does? And how can one identify creative people for a study?
Going into the study, I keyed my hypotheses off the litany of famous people who I knew had personal or family histories of mental illness. James Joyce, for example, had a daughter who suffered from schizophrenia, and he himself had traits that placed him on the schizophrenia spectrum. (He was socially aloof and even cruel to those close to him, and his writing became progressively more detached from his audience and from reality, culminating in the near-psychotic neologisms and loose associations of Finnegans Wake.) Bertrand Russell, a philosopher whose work I admired, had multiple family members who suffered from schizophrenia. Einstein had a son with schizophrenia, and he himself displayed some of the social and interpersonal ineptitudes that can characterize the illness. Based on these clues, I hypothesized that my subjects would have an increased rate of schizophrenia in family members but that they themselves would be relatively well. I also hypothesized that creativity might run in families, based on prevailing views that the tendencies toward psychosis and toward having creative and original ideas were closely linked.
While my workshop study answered some questions, it raised others. Why does creativity run in families? What is it that gets transmitted? How much is due to nature and how much to nurture? Are writers especially prone to mood disorders because writing is an inherently lonely and introspective activity? What would I find if I studied a group of scientists instead?
So far, this study—which has examined 13 creative geniuses and 13 controls—has borne out a link between mental illness and creativity similar to the one I found in my Writers’ Workshop study. The creative subjects and their relatives have a higher rate of mental illness than the controls and their relatives do (though not as high a rate as I found in the first study), with the frequency being fairly even across the artists and the scientists. The most-common diagnoses include bipolar disorder, depression, anxiety or panic disorder, and alcoholism. I’ve also found some evidence supporting my early hypothesis that exceptionally creative people are more likely than control subjects to have one or more first-degree relatives with schizophrenia. Interestingly, when the physician and researcher Jon L. Karlsson examined the relatives of everyone listed in Iceland’s version of Who’s Who in the 1940s and ’60s, he found that they had higher-than-average rates of schizophrenia. Leonard Heston, a former psychiatric colleague of mine at Iowa, conducted an influential study of the children of schizophrenic mothers raised from infancy by foster or adoptive parents, and found that more than 10 percent of these children developed schizophrenia, as compared with zero percent of a control group. This suggests a powerful genetic component to schizophrenia. Heston and I discussed whether some particularly creative people owe their gifts to a subclinical variant of schizophrenia that loosens their associative links sufficiently to enhance their creativity but not enough to make them mentally ill.
Our family evenings—just everybody sitting around working. We’d all be in the same room, and [my mother] would be working on her papers, preparing her lesson plans, and my father had huge stacks of papers and journals … This was before laptops, and so it was all paper-based. And I’d be sitting there with my homework, and my sisters are reading. And we’d just spend a few hours every night for 10 to 15 years—that’s how it was. Just working together. No TV.
So why do these highly gifted people experience mental illness at a higher-than-average rate? Given that (as a group) their family members have higher rates than those that occur in the general population or in the matched comparison group, we must suspect that nature plays a role—that Francis Galton and others were right about the role of hereditary factors in people’s predisposition to both creativity and mental illness. We can only speculate about what those factors might be, but there are some clues in how these people describe themselves and their lifestyles.
One possible contributory factor is a personality style shared by many of my creative subjects. These subjects are adventuresome and exploratory. They take risks. Particularly in science, the best work tends to occur in new frontiers. (As a popular saying among scientists goes: “When you work at the cutting edge, you are likely to bleed.”) They have to confront doubt and rejection. And yet they have to persist in spite of that, because they believe strongly in the value of what they do. This can lead to psychic pain, which may manifest itself as depression or anxiety, or lead people to attempt to reduce their discomfort by turning to pain relievers such as alcohol.
I’ve been struck by how many of these people refer to their most creative ideas as “obvious.” Since these ideas are almost always the opposite of obvious to other people, creative luminaries can face doubt and resistance when advocating for them. As one artist told me, “The funny thing about [one’s own] talent is that you are blind to it. You just can’t see what it is when you have it … When you have talent and see things in a particular way, you are amazed that other people can’t see it.” Persisting in the face of doubt or rejection, for artists or for scientists, can be a lonely path—one that may also partially explain why some of these people experience mental illness.
One interesting paradox that has emerged during conversations with subjects about their creative processes is that, though many of them suffer from mood and anxiety disorders, they associate their gifts with strong feelings of joy and excitement. “Doing good science is simply the most pleasurable thing anyone can do,” one scientist told me. “It is like having good sex. It excites you all over and makes you feel as if you are all-powerful and complete.” This is reminiscent of what creative geniuses throughout history have said. For instance, here’s Tchaikovsky, the composer, writing in the mid-19th century:
It would be vain to try to put into words that immeasurable sense of bliss which comes over me directly a new idea awakens in me and begins to assume a different form. I forget everything and behave like a madman. Everything within me starts pulsing and quivering; hardly have I begun the sketch ere one thought follows another.
Another of my subjects, a neuroscientist and an inventor, told me, “There is no greater joy that I have in my life than having an idea that’s a good idea. At that moment it pops into my head, it is so deeply satisfying and rewarding … My nucleus accumbens is probably going nuts when it happens.” (The nucleus accumbens, at the core of the brain’s reward system, is activated by pleasure, whether it comes from eating good food or receiving money or taking euphoria-inducing drugs.)
As for how these ideas emerge, almost all of my subjects confirmed that when eureka moments occur, they tend to be precipitated by long periods of preparation and incubation, and to strike when the mind is relaxed—during that state we called REST. “A lot of it happens when you are doing one thing and you’re not thinking about what your mind is doing,” one of the artists in my study told me. “I’m either watching television, I’m reading a book, and I make a connection … It may have nothing to do with what I am doing, but somehow or other you see something or hear something or do something, and it pops that connection together.”
Many subjects mentioned lighting on ideas while showering, driving, or exercising. One described a more unusual regimen involving an afternoon nap: “It’s during this nap that I get a lot of my work done. I find that when the ideas come to me, they come as I’m falling asleep, they come as I’m waking up, they come if I’m sitting in the tub. I don’t normally take baths … but sometimes I’ll just go in there and have a think.”
Some of the other most common findings my studies have suggested include:
Many creative people are autodidacts. They like to teach themselves, rather than be spoon-fed information or knowledge in standard educational settings. Famously, three Silicon Valley creative geniuses have been college dropouts: Bill Gates, Steve Jobs, and Mark Zuckerberg. Steve Jobs—for many, the archetype of the creative person—popularized the motto “Think different.” Because their thinking is different, my subjects often express the idea that standard ways of learning and teaching are not always helpful and may even be distracting, and that they prefer to learn on their own. Many of my subjects taught themselves to read before even starting school, and many have read widely throughout their lives. For example, in his article “On Proof and Progress in Mathematics,” Bill Thurston wrote:
My mathematical education was rather independent and idiosyncratic, where for a number of years I learned things on my own, developing personal mental models for how to think about mathematics. This has often been a big advantage for me in thinking about mathematics, because it’s easy to pick up later the standard mental models shared by groups of mathematicians.
This observation has important implications for the education of creatively gifted children. They need to be allowed and even encouraged to “think different.” (Several subjects described to me how they would get in trouble in school for pointing out when their teachers said things that they knew to be wrong, such as when a second-grade teacher explained to one of my subjects that light and sound are both waves and travel at the same speed. The teacher did not appreciate being corrected.)
Many creative people are polymaths, as historic geniuses including Michelangelo and Leonardo da Vinci were. George Lucas was awarded not only the National Medal of Arts in 2012 but also the National Medal of Technology in 2004. Lucas’s interests include anthropology, history, sociology, neuroscience, digital technology, architecture, and interior design. Another polymath, one of the scientists, described his love of literature:
I love words, and I love the rhythms and sounds of words … [As a young child] I very rapidly built up a huge storehouse of … Shakespearean sonnets, soliloquies, poems across the whole spectrum … When I got to college, I was open to many possible careers. I actually took a creative-writing course early. I strongly considered being a novelist or a writer or a poet, because I love words that much … [But for] the academics, it’s not so much about the beauty of the words. So I found that dissatisfying, and I took some biology courses, some quantum courses. I really clicked with biology. It seemed like a complex system that was tractable, beautiful, important. And so I chose biochemistry.
The arts and the sciences are seen as separate tracks, and students are encouraged to specialize in one or the other. If we wish to nurture creative students, this may be a serious error.
Creative people tend to be very persistent, even when confronted with skepticism or rejection. Asked what it takes to be a successful scientist, one replied:
Perseverance … In order to have that freedom to find things out, you have to have perseverance … The grant doesn’t get funded, and the next day you get up, and you put the next foot in front, and you keep putting your foot in front … I still take things personally. I don’t get a grant, and … I’m upset for days. And then I sit down and I write the grant again.
Do creative people simply have more ideas, and therefore differ from average people only in a quantitative way, or are they also qualitatively different? One subject, a neuroscientist and an inventor, addressed this question in an interesting way, conceptualizing the matter in terms of kites and strings:
In the R&D business, we kind of lump people into two categories: inventors and engineers. The inventor is the kite kind of person. They have a zillion ideas and they come up with great first prototypes. But generally an inventor … is not a tidy person. He sees the big picture and … [is] constantly lashing something together that doesn’t really work. And then the engineers are the strings, the craftsmen [who pick out a good idea] and make it really practical. So, one is about a good idea, the other is about … making it practical.
Of course, having too many ideas can be dangerous. One subject, a scientist who happens to be both a kite and a string, described to me “a willingness to take an enormous risk with your whole heart and soul and mind on something where you know the impact—if it worked—would be utterly transformative.” The if here is significant. Part of what comes with seeing connections no one else sees is that not all of these connections actually exist. “Everybody has crazy things they want to try,” that same subject told me. “Part of creativity is picking the little bubbles that come up to your conscious mind, and picking which one to let grow and which one to give access to more of your mind, and then have that translate into action.”
In A Beautiful Mind, her biography of the mathematician John Nash, Sylvia Nasar describes a visit Nash received from a fellow mathematician while institutionalized at McLean Hospital. “How could you, a mathematician, a man devoted to reason and logical truth,” the colleague asked, “believe that extraterrestrials are sending you messages? How could you believe that you are being recruited by aliens from outer space to save the world?” To which Nash replied: “Because the ideas I had about supernatural beings came to me the same way that my mathematical ideas did. So I took them seriously.”
Some people see things others cannot, and they are right, and we call them creative geniuses. Some people see things others cannot, and they are wrong, and we call them mentally ill. And some people, like John Nash, are both.
Tags: benson music shop, brain, brain power, creative brain, creativity, creativity and genius, kickstrap, music and the brain
Related posts
-
Corona Virus Resource Page
At this time of global concern, Benson Music Shop and KickStrap will monitor and post developments related to COVID-19. We will post resources here.
-
Covid 19 Social Distancing Music Resources
Resources during Corona Virus: New NAMM Foundation Webinar: Making Music Online – How-To’s for Private and Group Lessons: The one-hour webinar presented by The NAMM Foundation invites educators to, “discover online group lessons and therapeutic music-making for children and adults, and business models to move in-store music lessons online to keep students connected and making music.
About The Author
Gary Benson
Gary Benson is a musician, drummer and entrepreneur. A Berklee College of Music alumni, Gary has played in many bands and enjoys spreading the joy of music. In 2008 he invented the KickStrap to solve his problem of drum slide. Stop the Creep!